3D-Printing Liquid Electronics

Berkeley Lab is working on 3D printing images with water that could lead to liquid electronic printing.

From 3dprint.com

All-Liquid 3D Printing Has Potential for Liquid Electronics Applications

….aside from 3D printed innovations only visible in water and using a 3D printer to create images with water, good old H2O has not exactly been at the forefront in the 3D printing world…until now. Researchers from the Lawrence Berkeley National Laboratory (Berkeley Lab), managed by the University of California for the US Department of Energy’s Office of Science, recently determined a way to 3D print structures that are made completely of liquid materials.

Tom Russell, a visiting faculty scientist in Berkeley Lab’s Materials Sciences Division, explained, “It’s a new class of material that can reconfigure itself, and it has the potential to be customized into liquid reaction vessels for many uses, from chemical synthesis to ion transport to catalysis.”

The team injects threads of water into silicone oil using a modified 3D printer, actually sculpting liquid tubes inside an additional liquid. Learning how to create liquid tubes inside another liquid, and then figuring out how to automate the process, were crucial advances in getting the method to work properly.

Russell and Joe Forth, a postdoctoral researcher in the Materials Sciences Division, developed the material, and the findings were published in an article, titled “Reconfigurable Printed Liquids,” in the Advanced Materials journal; co-authors of the paper include Forth, Xubo Liu, Jaffar Hasnain, Anju Toor, Karol Miszta, Shaowei Shi, Phillip L. Geissler, Todd Emrick, Brett A. Helms, and Russell. The research effort was truly collaborative – Liu and Shi are from the Beijing University of Chemical Technology, while Miszta works with the Molecular Foundry at the Berkeley Lab, Geissler is with the University of California, Emrick is from the University of Massachusetts, and Forth, Hasnain, Toor, Helms, and Russell are all with the Berkeley Lab.

The abstract reads, “Liquids lack the spatial order required for advanced functionality. Interfacial assemblies of colloids, however, can be used to shape liquids into complex, 3D objects, simultaneously forming 2D layers with novel magnetic, plasmonic, or structural properties. Fully exploiting all‐liquid systems that are structured by their interfaces would create a new class of biomimetic, reconfigurable, and responsive materials. Here, printed constructs of water in oil are presented. Both form and function are given to the system by the assembly and jamming of nanoparticle surfactants, formed from the interfacial interaction of nanoparticles and amphiphilic polymers that bear complementary functional groups. These yield dissipative constructs that exhibit a compartmentalized response to chemical cues.

Read More
About Paul Gordon 3009 Articles
Paul Gordon is the publisher and editor of iState.TV. He has published and edited newspapers, poetry magazines and online weekly magazines. He is the director of Social Cognito, an SEO/Web Marketing Company. You can reach Paul at pg@istate.tv

1 Trackback / Pingback

  1. Headlines You May Have Missed - March 28th, 2018 - Episode 049

Comments are closed.