Growing Solar Cells is Cheap Alternative to Inorganic

While organic solar cells may, at present, not be practical enough to have a viable place in the commercial market, researchers are working on ways to increase their efficiency and potentially create a whole alternative, more cost effective product when compared with inorganic solar cells.

Organic solar cells as an alternative to conventional solar cells

Organic solar cells could be an inexpensive and versatile alternative to inorganic solar cells. However, their low efficiencies and limited lifetimes currently render them impractical for commercial use.

As part of an effort to enable performance improvements and bring these solar cells closer to practical adoption, researchers at the Argonne-Northwestern Solar Energy Research Center (ANSER), a collaboration between Northwestern University and the U.S. Department of Energy’s (DOE) Argonne National Laboratory, have gotten a better look at how the molecular structures of organic solar cells form.

Using Argonne’s Advanced Photon Source (APS), a DOE Office of Science User Facility, researchers analyzed how organic solar cells‘ crystal structures develop as they are produced under different conditions. With the APS, researchers learned how certain additives affect the microstructures obtained, providing new insights that can improve the cells’ efficiency.

 

…….”It was the stability and reproducibility of this specific spin-coating setup that allowed this study to happen,” said Northwestern graduate student Eric Manley, first author of the study published Oct. 9 in Advanced Materials.

The study’s most significant discovery, made possible by the new experimental setup, was how certain additives can significantly affect both the time it takes for the film’s structure to stop changing and the intermediate structures the film adopts during evolution. Even after the solvent dissolves, the structures can continue to change for anywhere from seconds to hours, depending on what additives are present. The films produced more slowly with additives generally perform better than the more rapidly formed films.

“Producers of solar cells will often go to the next step in production quickly after spin coating, which has the potential to lock the morphology while the structure is still forming. This can significantly affect the cell’s performance, positively and negatively,” said Manley. “We discovered that we needed to report the time between fabrication steps to control conditions to reproduce optimized results.”

Read More at Techxplore

About Paul Gordon 2918 Articles
Paul Gordon is the publisher and editor of iState.TV. He has published and edited newspapers, poetry magazines and online weekly magazines. He is the director of Social Cognito, an SEO/Web Marketing Company. You can reach Paul at pg@istate.tv