Mars colonies could benefit from bacteria that turn CO2 into 3D printable biopolymers

from 3ders.org – An ongoing synthetic biology project at Harvard Medical School is using bacteria to transform carbon dioxide (CO2) into more useful compounds, such as plastic. The innovative process, while still in its early stages, could one day be used to create building materials on Mars (where the atmosphere is composed mainly of CO2), which could in turn be 3D printed into structures.

One of the project’s researchers, a postdoctoral fellow named Shannon Nangle, explained how she and her co-researchers were transforming a bacteria called R. eutropha into usable polymer compounds and the impact this process could have not only on Mars, but also here on Earth.

SPONSOR

If you like this content, be sure you click here and support iState's ability to deliver to you news for the iStater, the state of one.

“[The bacteria] can actually fill up their cells with about 80 percent of this polymer,” she said. “It’s not an ideal material for industrial processing, so what we want to do is use metabolic engineering techniques to actually modulate the material properties of this polymer such that we can use it for 3D printing, injection molding, other industrial-type machining.”

Nangle is also working with a team from the Silver Lab to create what they are calling a “bionic leaf,” which uses the same principle of transforming CO2 into other compounds using bacteria. The bionic leaf could have important applications on Earth, as it is being developed as a way to combat global warming.

In short, the bionic leaf system uses solar energy to split water molecules (H2O) into oxygen and hydrogen. When the bacteria is introduced into the system, it consumes the hydrogen and uses it as an energy source.

The hydrogen-powered bacteria is then equipped to transform carbon dioxide from the air into different types of molecules. The process, says Nangle, is similar to photosynthesis, but is actually much more efficient.

“The CO2 can be used much in the way that plants use CO2,” she explained. “The bacteria are already adapted to extract it from the air in the same way that plants are.” The bionic leaf device, however, is capable of removing 180 grams of CO2 out of 230,000 liters of air with every kilowatt hour of energy it uses. While these number may sound abstract, the scientists assure that this is an impressive efficiency.

read more – http://www.3ders.org/articles/20170720-mars-colonies-could-benefit-from-bacteria-that-turn-co2-into-3d-printable-biopolymers.html

Mars colonies could benefit from bacteria that turn CO2 into 3D printable biopolymers

An ongoing synthetic biology project at Harvard Medical School is using bacteria to transform carbon dioxide (CO2) into more useful compounds, such as plastic. The process could one day be used to create building materials on Mars, which could in turn be 3D printed into structures.

Read original article

Facebook Comments
About Paul Gordon 1358 Articles

Paul Gordon is the publisher and editor of iState.TV. He has published and edited newspapers, poetry magazines and online weekly magazines.
He is the director of Social Cognito, an SEO/Web Marketing Company. You can reach Paul at pg@istate.tv

Be the first to comment

Leave a Reply

Your email address will not be published.


*