Scientists Pierce the Mystery of Electrons Inside Graphene

For the first time, scientists have finally entered the mysterious center of graphene.  They can now observe how electrons behave inside graphene.


Scientists get a good look at electrons inside graphene

Scientists have demonstrated how to view many-particle interactions in graphene using infrared light.

Electrons in graphene—an atomically thin, flexible, and incredibly strong substance that has captured the imaginations of materials scientists and physicists—move at the speed of light, and behave as if they have no mass.

Researchers conducted their work in a custom-built vessel cooled to a few degrees above absolute zero. They use a small sliver of graphene sandwiched between two boron-nitride crystals and placed on top of a silicon wafer; at approximately 16 microns long, the entire stack of material is less than one-sixth the size of a human hair.

“Here we have constructed a system that narrowly focuses infrared light down to the sample, which is inside a large magnet and at very low temperature,” says Erik Henriksen, assistant professor of physics at Washington University in St. Louis, whose lab conducted the research. “It allows us to literally shine a flashlight on it, and explore its electronic properties by seeing which colors of light are absorbed.”

Graphene has generated a lot of excitement in the materials-science research community because of its potential applications in batteries, solar energy cells, touch screens, and more. But physicists are more interested in graphene because of its unusual electron structure, under which its electrons behave like relativistic particles.

Read More
About Paul Gordon 3009 Articles
Paul Gordon is the publisher and editor of iState.TV. He has published and edited newspapers, poetry magazines and online weekly magazines. He is the director of Social Cognito, an SEO/Web Marketing Company. You can reach Paul at