Second-Generation BioFuels Promise Less Toxicity, Greater Efficiency

Next generation solvent contributes to next generation biofuel production from biomass

Source: Kanazawa University
Summary :Compared to first-generation biofuels produced from foodstuffs, production of second-generation biofuels for daily use is an urgent issue. In this study, a novel carboxylate-type liquid zwitterion was developed as a solvent of biomass, which could dissolve cellulose with very low toxicity to microorganisms. Use of this novel solvent enables significant reduction of energy cost for ethanol production from non-food biomass. Thus, second-generation biofuel ethanol production is in sight of practical implementation….
….the energy recovered in the ethanol so produced is less than that required to produce it, i.e., there is a negative energy balance (more production of ethanol imposes more load on the environment). It was considered impossible to solve this problem, since a harsh solvent was needed to break down recalcitrant plant materials like cellulose, while such a harsh solvent would kill microorganisms (with fragile and very vulnerable cell membranes) that play essential roles in the fermentation necessary for producing ethanol.

…..With these experimental results, it is shown that, using the carboxylate-type liquid zwitterion, plant biomass could be converted into ethanol in a single reaction pot without washing/separation processes. This should be a big step forward in the production/utilization of second-generation biofuel ethanol through reducing large amounts of energy input.

Besides the first-generation and second-generation biofuel ethanol, a third-generation biofuel, a kind of oil, may be made from some algal species. In order to obtain such a third-generation biofuel from algae, polysaccharides like cellulose, which are main components of cell walls, have to be dissolved. The energy efficiency would be much increased if dissolved polysaccharides could be converted into ethanol. Further development of our current study would significantly contribute to the production of not only second-generation but also third-generation biofuel ethanol.

 

Read More at Science Daily

About Paul Gordon 3006 Articles
Paul Gordon is the publisher and editor of iState.TV. He has published and edited newspapers, poetry magazines and online weekly magazines. He is the director of Social Cognito, an SEO/Web Marketing Company. You can reach Paul at pg@istate.tv