Stars Deliver Drugs to Cells at the Nano-Scale

Nanoparticles in the shape of stars have been designed to enter into specific cells of the body.  Only after entering the cells do these star-shaped nanoparticles deliver their payloads, therapeutic medicines.


Star-shaped nanoparticles that release their drug payload only after entering cells

A*STAR researchers have developed nanoscale drug delivery particles that can sense their surroundings, and release their payload only after entering a cell, a discovery that could make many existing medicines more effective

The new nanoparticles, developed by Zibiao Li from the A*STAR Institute of Materials Research and Engineering and his collaborators, are a significant upgrade from previous generations of polymer-based drug delivery nanoparticles. Early examples typically consisted of simple polymer chains with a polar, hydrophilic head and a non-polar, hydrophobic tail. In water, these chains naturally aggregate into spheres, with their hydrophobic tails all pointing inward to form a non-polar core. The core formed a good site for drug molecules to nestle. In the bloodstream, however, these aggregates tend to be torn apart.

Li and his colleagues used the latest polymer synthesis techniques to create single-molecule nanoparticles. Rather than a self-assembled aggregate of separate polymers, the team synthesized a more robust structure in which the polymer chains were strongly covalently bonded to a central core. The synthesis began with beta-cyclodextrin, a circular sugar molecule with 21 hydroxyl groups on its surface. The hydroxyl groups formed the chemical anchors from which the team constructed the nanoparticle’s multiple long, Y-shaped, multifunctional polymer arms.

“The greatest challenge in making the [nanoparticle] was to integrate different synthetic methodologies into one macromolecular design,” says Li. At one of the ends of each Y-shaped branch, the team attached a temperature-sensitive polymer called PNIPAM. At room temperature the PNIPAM polymer extends outward, but collapses once body temperature, 37 degrees Celsius, is reached, allowing the nanoparticle’s drug molecule cargo to escape.

Read More
About Paul Gordon 3009 Articles
Paul Gordon is the publisher and editor of iState.TV. He has published and edited newspapers, poetry magazines and online weekly magazines. He is the director of Social Cognito, an SEO/Web Marketing Company. You can reach Paul at