Triboelectricity Will Give You Wireless Power from Motion Alone

A wireless energy generator creates electric power with the motion around it, including waves from water or motion from hands.  The technique is called triboelectricity and is being worked on by a team from the University of Clemson in the US.

Wireless energy source generates electricity from simple motions such as waves, clapping hands

Researchers from Clemson’s Nanomaterials Institute (CNI) are one step closer to wirelessly powering the world using triboelectricity — a green energy source.

In March 2017, a group of physicists at CNI invented the ultra-simple triboelectric nanogenerator, or U-TENG — a small device made simply of plastic and tape that generates electricity from motion and vibrations. When the two materials are brought together — through clapping your hands or tapping your feet, for example — a voltage is generated that is detected by a wired, external circuit. Electrical energy, by way of the circuit, is then stored in a capacitor or a battery until it’s needed.

Nine months later, in a paper published in the journal Advanced Energy Materials, the researchers have uncovered a wireless version of TENG, called the W-TENG, which greatly expands the applications of the technology.

The W-TENG was engineered under the same premise as the U-TENG, using materials that are so opposite in affinity for electrons that they generate a voltage when brought in contact with each other.

In the W-TENG, plastic was swapped for a multipart fiber made of graphene — a single layer of graphite, or pencil lead — and a biodegradable polymer known as poly-lactic acid (PLA). PLA, on its own, is great for separating positive and negative charges, but not so great at conducting electricity — which is why the researchers paired it with graphene. Kapton tape, the electron-grabbing material of the U-TENG — was replaced with Teflon, a compound known for coating nonstick cooking pans.

“We use Teflon because it has a lot of fluorine groups that are highly electronegative, whereas the graphene-PLA is highly electropositive. That’s a good way to juxtapose and create high voltages,” said Ramakrishna Podila, corresponding author of the study and an assistant professor of physics at Clemson.

 

Read More at Science Daily
About Paul Gordon 2930 Articles
Paul Gordon is the publisher and editor of iState.TV. He has published and edited newspapers, poetry magazines and online weekly magazines. He is the director of Social Cognito, an SEO/Web Marketing Company. You can reach Paul at pg@istate.tv

1 Trackback / Pingback

  1. Headlines You May Have Missed - February 6th, 2018 - Episode 022

Comments are closed.