Molecule-Sized Transistors Could Create Micro-Electro Reality

Transistors the size of molecules, oh my!  That’s right, electronics are getting smaller and smaller.  And now, a new breakthrough could make it possible to create electronic components as small as molecules, but not just any components, transistors.

 

SPONSOR

If you like this content, be sure you click here and support iState's ability to deliver to you news for the iStater, the state of one.

from sciencedaily.com

Date:August 14, 2017

Source:Columbia University School of Engineering and Applied ScienceSummary:Researchers have now reproducibly demonstrated current blockade — the ability to switch a device from the insulating to the conducting state where charge is added and removed one electron at a time — using atomically precise molecular clusters at room temperature. The study shows that single molecules can function as reproducible circuit elements such as transistors or diodes that can easily operate at room temperature.

A major goal in the field of molecular electronics, which aims to use single molecules as electronic components, is to make a device where a quantized, controllable flow of charge can be achieved at room temperature. A first step in this field is for researchers to demonstrate that single molecules can function as reproducible circuit elements such as transistors or diodes that can easily operate at room temperature.

A team led by Latha Venkataraman, professor of applied physics and chemistry at Columbia Engineering and Xavier Roy, assistant professor of chemistry (Arts & Sciences), published a study today in Nature Nanotechnology that is the first to reproducibly demonstrate current blockade — the ability to switch a device from the insulating to the conducting state where charge is added and removed one electron at a time — using atomically precise molecular clusters at room temperature.

Bonnie Choi, a graduate student in the Roy group and co-lead author of the work, created a single cluster of geometrically ordered atoms with an inorganic core made of just 14 atoms — resulting in a diameter of about 0.5 nanometers — and positioned linkers that wired the core to two gold electrodes, much as a resistor is soldered to two metal electrodes to form a macroscopic electrical circuit (e.g. the filament in a light bulb).

The researchers used a scanning tunneling microscope technique that they have pioneered to make junctions comprising a single cluster connected to the two gold electrodes, which enabled them to characterize its electrical response as they varied the applied bias voltage. The technique allows them to fabricate and measure thousands of junctions with reproducible transport characteristics.

Facebook Comments
About Paul Gordon 1360 Articles

Paul Gordon is the publisher and editor of iState.TV. He has published and edited newspapers, poetry magazines and online weekly magazines.
He is the director of Social Cognito, an SEO/Web Marketing Company. You can reach Paul at pg@istate.tv

Be the first to comment

Leave a Reply

Your email address will not be published.


*